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Abstract. High-frequency vibrations encountered during land transit of
sensitive payloads have long been known to be a possible cause of payload
damage and subsequent mission failure. As sensors are also adversely af-
fected by this phenomenon, we aim to provide a solution to minimize
high-frequency noise vibrations without reliance on high performance
sensing. Naturally, this presents the need for on-board adaptive control
capabilities to reduce sensor noise and damage to secured payloads. Thus,
we present a novel approach to reducing high-frequency vibration content
(HVC) encountered during transit, with the explicit goal of maintaining
a desired vehicle speed while keeping high-frequency vibrations below a
given threshold regardless of the terrain characteristics. To this end, we
present a two-stage solution consisting of a vibration-compensating speed
controller and an optimal tracking controller for control command deter-
mination. The proposed controller is implemented on a Clearpath Jackal
unmanned ground vehicle and subjected to a priori unknown mixed ter-
rain types. Experiments performed on these varying terrains show that
the proposed control architecture is able to adjust the desired robot tra-
jectory to remain below the vibration thresholds defined by the mission
objective.

Keywords: Adaptive trajectory planning · Navigation on unstructured
terrain · Vibration mitigation

1 Introduction

Adverse effects from high-frequency vibrations can adversely affect critical mis-
sion tasks beyond the introduction of sensor noise [7, 9]. These vibrations can
cause damage to secured payloads [10, 22] and aggravate the conditions of in-
jured personnel during medical evacuations [3, 21]. These issues naturally give
rise to the problem of vibration suppression.

⋆ These authors contributed equally to this work.
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In this work, we present a novel approach to reducing the high-frequency
vibration content encountered during transit with the explicit goal of maintain-
ing a desired vehicle speed, while keeping high-frequency vibrations below a
given threshold regardless of the current terrain type. Our theoretical work and
presented implementation are motivated by programs like the Squad Multipur-
pose Equipment Transport (SMET) program, a US Army program providing
a robotic “mule” for military personnel; tasks include reducing soldiers’ weight
burden and medical evacuation of harmed personnel. Sensitive payloads like an
injured soldier, or sensitive electronic or chemical equipment, cannot endure
high-energy, high-frequency vibrations above a certain threshold without posing
a major safety concern during transit. Such settings present a need for ground
vehicles to reduce high-frequency vibrations while traversing unknown terrain,
without significantly compromising movement speed.

Since many state-of-the-art robotic platforms— Jackal, Argo J8, and Clearpath
J5 - come unequipped with vehicle suspension, we are particularly concerned
with achieving high-frequency noise mitigation through a novel controller archi-
tecture. Moreover, we wish for our approach to be based on portable commercial
off-the-shelf components, so as to ensure the widest possibility of proliferation
on existing ground vehicle fleets, without the need of a costly retrofitting cam-
paign. To accomplish this objective, we develop a two-step approach to trajec-
tory planning based on a set of mission-dependent waypoints. Given a desired
nominal velocity, as well as a maximum permitted velocity, our approach aims
to smoothly vary the vehicle’s speed to actively suppress high-frequency vibra-
tion normal to the terrain. To this end, we introduce an intuitive vehicle- and
terrain-agnostic high-frequency vibration measure which is used to command a
desired maximum velocity. The frequency content is measured using a low-cost
off-the-shelf inertial measurement unit. We use an optimal feedback controller
to minimize incurred cost while converging to the desired waypoint.

2 Prior Work

Previous work on noise and vibration mitigation has chiefly focused on terrain
determination based on the pseudo-spectral density of the vibrations, allowing
for discrete gain or controller switching [1, 11, 25]. Such approaches only work
when the terrain that will be encountered is known a priori, with the classi-
fication model depending directly on the vehicle under consideration. Unlike
these methods, we provide a means of continuously adapting to changing ter-
rain conditions without the need for pre-classifying the terrain types that may
be encountered [14, 19] or the need to introduce additional haptic sensors [4, 8,
15]. In addition, only the tracking controller is dependent on the vehicle proper-
ties, with no knowledge assumed about the frequency response properties of the
vehicle to vibrations.

Beyond these terrain-classifying approaches, other traditional approaches to
vibration mitigation can be divided into two categories: approaches that are con-
cerned with mitigating vibration induced by the vehicle’s internal components
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Fig. 1. Clearpath Jackal unmanned ground vehicle 4

(e.g., the engine, transmission, suspension, etc.), and those that deal with exter-
nal effects (e.g., speed humps, degraded road surfaces, unstructured terrain). We
refer to the first category as internal vibrations, and the latter as external vibra-
tions. Internal vibration mitigation has chiefly been centered around damping
the resonance response among internal components [23], whereas external vibra-
tion mitigation can be further divided into active and passive approach.

Passive external vibration suppression is governed by the fixed suspension
design of the vehicle, whereas active suspension systems make use of controlled
actuators to complement the passive springs and dampers [27]. In this work, we
do not expect the vehicle to have any type of suspension system, thus limiting
our control inputs to wheel torque/velocity, steering angle, etc.

We leverage an off-the-shelf inertial measurement unit to obtain a measure
of the severity of the vehicle vibrations. In particular, we focus on vibrations
that are perpendicular to the vehicle. Frequency properties of the vibrations are
obtained by applying a fast Fourier transform (FFT) to a small time window of
sampled data. We use frequency content in a precompensated integral controller
(PCIC) to obtain the maximum vehicle speed needed to suppress the vehicle’s
vibrations. This maximum velocity is then applied to the control input - obtained
from a tracking linear quadratic requlator (LQR) - by simply scaling the control
input to produce an admissible control input. The LQR controller is obtained
from a discretized and periodically linearized kinematic model of the vehicle.

We demonstrate the proposed control law on a Clearpath Jackal unmanned
ground vehicle (UGV), shown in Figure 1, using only the internal wheel en-
coders and a low-cost inertial measurement unit as sensor feedback. During the
experimental trials, we subject the vehicle to different terrain types (concrete,

4 Video of the controller applied to the Jackal UGV can be found at
https://uofi.box.com/s/9lvx16hrrw7kr4ew7og91w4uspid3n02.
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grass, mulch) along a fixed desired path, and we compare the reduction in high-
frequency vibrations when using our adaptive speed-based control law compared
to a traditional fixed velocity control law.

3 Waypoint Tracking Controller

We first present the kinematic vehicle model used as part of our LQR tracking
controller. We then make use of the LQR to generate the system inputs to
guide our vehicle to the desired waypoints. Our vehicle hardware limitations
restricted our usage of torque-based control and a full dynamics model; rather,
we commanded wheel velocities from a derived kinematics model.

3.1 Vehicle Kinematics

The classical equation to represent the dynamics of a nonholonomic mobile robot
can be obtained from the Lagrangian formulation [6]:

M(q)q̈ + Vm(q, q̇)q̇ +Gm(q) + τd = B(q)τ −AT (q)λ, (1)

where q ∈ Rn is the generalized state, τ ∈ Rr is the input vector, λ ∈ Rm is the
vector of constraint forces, M(q) ∈ Rn×n is a symmetric and positive-definite
inertia matrix, V (q, q̇) ∈ R is the matrix of Coriolis and centrifugal forces, G(q) ∈
Rn is the vector of gravitational forces, τd ∈ Rn is the vector of disturbances,
B(q) ∈ Rn×r is the input transformation matrix, and A(q) ∈ Rm×n is the matrix
associated with any constraints (frictional cone, maximum acceleration, etc).

The above model is widely used in the development of multipurpose con-
trollers, but such controllers generate torque commands, as opposed to veloc-
ity commands which are more commonly implemented in commercial robotics.
Thus, the use of such a model utilizing torque commands requires additional
knowledge of the actuation system of the robot [20], i.e., knowledge regarding
the actuator dynamics and model of internal mechanisms relating motor torque
to the angular velocity of the wheels. Such information is not readily available for
the Jackal UGV. Moreover, the motors on the Jackal have a high gearing reduc-
tion which makes torque-based control difficult to implement since the nonlinear
friction dynamics, η(t, q, q̇), become non-negligible at these high gearing ratios:

τ = Kti+ η(t, q, q̇).

Thus, we will base our controller design on a velocity-based kinematic model
of the Jackal where wheel velocity input commands are utilized directly to ma-
nipulate system behavior.

We now derive the planar kinematics of an unmanned ground vehicle. In this
work, we assume the vehicle maneuvers without slipping, and that the vehicle
is based on differential (or skid) steering. Existing skid steering models utilize
left and right angular wheel speeds to produce the kinematic and dynamic equa-
tions that relate the tire radius and frame size to translational velocities [17]. In
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contrast, the Jackal UGV comes equipped with its own skid steer controller that
takes into account these parameters for direct control of translational velocity
in the x and y directions shown in Figure 2.

Fig. 2. Kinematic diagram the Jackal unmanned ground vehicle based on differential
steering

As a result of the discussion above, most market-available ground robots
utilize velocity controllers to track input reference velocities. As such, we devel-
oped a velocity controller consistent with the kinematic diagram illustrated in
Figure 2 following the approaches of [2, 12]. The resulting kinematics model is
as follows: 


ẋ
ẏ

θ̇


 =




1
2 (vL + vR) cos θ
1
2 (vL + vR) sin θ
(vR − vL)/w


 , (2)

such that vL and vR are the velocities of the left and right wheels, θ is the
heading angle, and w = 0.4 m is the vehicle’s track width.

The derived model is utilized for direct control of translational velocities and
the angular velocity on a two-dimensional plane.

3.2 LQR Tracking Controller Design

We employ a discrete-time linear quadratic regulator (LQR) to navigate towards
waypoints by using the current state. We first present vehicle dynamics (2)
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linearized about heading angle θ0:



ẋ
ẏ

θ̇



θ0

=




1
2 cos θ0

1
2 cos θ0

1
2 sin θ0

1
2 sin θ0

− 1
w

1
w



[
vL
vR

]
. (3)

We proceed by discretizing the above linear system dynamics using an exact
zero-order hold discretization approach based on exponential matrices [5, p. 99].
The sampling period that we consider in this work is ∆t = 0.01 s. We now
introduce the state and control penalty matrices that we have considered in this
work:

Q = diag
([
5, 5, 0.5

])
, R = I2×2, (4)

where Q is the state penalty matrix, and R is the control penalty matrix. These
matrices were found in tuning of our simulation and on hardware platform.
With this configuration, we prioritize position tracking over heading tracking
by more heavily penalizing deviation from the desired positions. For different
vehicles, different gain values may be required to obtain control inputs of suitable
magnitudes for the actuators. In this work, we have employed a custom finite
horizon LQR algorithm of 50 iterations to obtain feedback gain matrix K ∈
R2×3. We relinearize the model and recompute this gain every five seconds.

We implement the controller as follows:

~u = K(~xdes − ~x),

where ~x ∈ R3 denotes the full vehicle state, ~xdes ∈ R3 corresponds to the current
desired waypoint, and ~u ∈ R2 corresponds to the desired right and left wheel
velocity.

4 High-Frequency Vibration Compensator

As mentioned in the introduction, we wish to regulate the speed of the vehicle to
control the severity of high-frequency vibrations. This task naturally poses the
question of what constitutes a usable measure of the high-frequency vibration
content. We discuss such a measure at the beginning of this section. Given this
measure, we then design a compensator to adjust our maximum desired speed.

Given a measure of the high-frequency content, we may then design a model-
free controller that outputs a speed limit, which is consequently applied to the
control input obtained from the LQR controller in Sec. 3.2.

4.1 High-Frequency Vibration Measure

As mentioned previously, we will draw on linear acceleration readings of a low-
cost off-the-shelf inertial measurement unit (IMU) to obtain the strength of
high-frequency vibrations. Here, we discuss two candidate measures for the high-
frequency content, of which the latter will ultimately be used.
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We start with a sampled data signal of the linear acceleration measures. We
assume that the IMU is mounted on the vehicle such that the internal z-axis
faces normal to the level plane of the vehicle. We first consider the case of a
single acceleration signal, expanding to the case of multiple signals afterwards.

Let a(t) be the acceleration signal that we wish to be limited in its high-
frequency power. Since we will consider the signal properties in the frequency
domain, we will have to obtain sampled time windows of this continuous-time
signal, on which we apply a discrete Fourier transform.

Let a(t) be sampled at sampling frequency fs. We wish to obtain sampled
windows of a(t) of duration ∆twin, such that each window contains Nwin =
fs∆twin ∈ N samples. We denote each window by ak = {a(k∆twin), a(k∆twin +
1/fs), a(k∆twin + 2/fs), . . . , a((k + 1)∆twin)}, where k ∈ N. We may then ap-
ply a discrete Fourier transform (DFT) [24], [26] on each of these windows,
such that we obtain αk[f ], where f ∈ F := {0, fs/(2(Nwin − 1)), 2fs/(2(Nwin −
1)), . . . , fs/2}. The latter maximum frequency fs/2 is the Nyquist frequency.
The value of αk[f ] denotes the power of the signal for frequencies in the range
[f, f + fs/(2(Nwin − 1))].

Multiple acceleration signals. Let us now consider the case where we have
multiple accelerations that we could like to consider. We denote these n accel-
erations by a(1), . . . , a(n). One approach to combining these signals is by taking
a linear combination to obtain

a =
n∑

i=1

bia
(i),

such that
∑n

i=1 bi = 1 and each bi > 0. This does, however, not preclude the
possibility of destructive interference between the various signals, which may
make for a signal power of a that is less than that of one of its constituent signals
a(i). One could elect to consider |a(i)| instead, but this would not account for
the effect of high-frequency sign changes in each signal, which would skew the
DFT towards lower frequencies.

A more reasonable approach would be to consider DFT results of the accel-

eration signal α
(i)
k , and treat each result as a vector in RNwin . Since each element

in each α
(i)
k is nonnegative, we can now consider

αk =

n∑

i=1

βiα
(i)
k ,

with the stipulation that
∑n

i=1 βi = 1 and each βi > 0. The addition of signal
powers is clearly constructive, and allows us to place greater emphasis on some
signals by increasing the magnitude of the pertinent βi coefficients.

Implications of sampling parameter choice. Having obtained the discrete
Fourier transform of the acceleration signal for window k, we now make a number
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of observations on the importance of the sampling rate fs and window duration
∆twin. It is clear from the Nyquist frequency that a higher sampling rate is
directly related to a higher observed maximum frequency. In practice, terrain
induced vibrations encountered during trials rarely affect frequencies above 20
to 30 Hz.

With regards to the effect of the window duration, a longer duration allows
one to capture more samples, thus allowing for greater resolution in the DFT
results. In addition, low frequency values are now distributed much more finely,
compared to when ∆twin is small. In the case of small ∆twin, αk[0] often accounts
for most of the signal’s energy, thereby providing less fine-grained control over
period high-frequency vibrations.

On the other hand, a longer window duration implies that there is a greater
time lag between the DFT results and the time when the terrain features that
produced such a frequency response were present. Since control-based on sig-
nal frequency content will always be reactive, this feature results in a trade-off
between lower frequency resolutions and greater time-delay in producing ade-
quate responses to rapidly changing terrain. In this case, a sliding or moving
window approach will not correct for this time lag, since the values obtained in
this way will only relate to a process that started time ∆twin ago. In addition,
an increased window duration will also “blend” new terrain responses with old
ones, which would result in a skewed representation of the near-term external
vibrations experienced.

4.2 High-frequency content measure.

We can now proceed to define a measure of the high-frequency content. We first
define a threshold frequency fth < fs/2, which marks the transition from low
to high frequencies. Since we wish to encode the effect of all high frequencies,
it would be natural to take the integral of the Fourier transform to account for
the power of all high frequencies. Since we are working with discrete values, we
instead consider a weighted sum of the following form:

rk,hf =
fs

2(Nwin − 1)

∑

f∈F :f≥ffs

αk[f ].

It should be noted that the magnitude of rk,hf is directly dependent on the
magnitude of the underlying signal a(t). Thus, for a terrain with high amplitude,
lower frequency vibrations, a high value of rk,hf may be obtained, whereas for a
terrain with high-frequency vibrations of lower amplitude, a low value of rk,hf is
obtained. This feature makes for a very cumbersome controller design, where one
would need to schedule gains based on the signal strength or prior knowledge of
the terrain that is to be traversed. Moreover, a controller that is tuned for one
vehicle would not be transferable to a different vehicle, since the signal power
may be higher or lower. This serves as an alternate solution to the method
proposed in this paper.
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To avoid these problems, we define the following measure:

rk =
fs

2(Nwin − 1)

∑
f∈F :f≥ffs

αk[f ]∑
f∈F αk[f ]

. (5)

where k represents the time-step unit. This ratio is agnostic of the signal power,
and is much more intuitive to reason about. One would be able to say that
10% of the signal power is permitted to be of a high-frequency, regardless of the
vehicle properties. For this reason, we will use this nondimensional measure in
our controller design, which we refer to as the high-frequency content ratio.

4.3 Velocity Regulator Design

Having defined a measure for the high-frequency external vibrations, we can
now proceed to design a model-free velocity regulator that aims to regulate this
quantity around a predefined setpoint.

Since the terrain is not known a priori, this controller will be, out of necessity,
reactive. We have chosen to design an integral controller with precompensation
(PCIC), as described next.

We would like to start out with a nonzero allowable speed defined by the
mission, a nominal speed V0 > 0. V0 serves as the speed the vehicle would like
to travel along all terrains given minimal vibrations. In this work, given the
limitations of the Jackal UGV, this speed is taken to be 1 m/s in consideration
of our UGV’s capabilities. We would like to regulate the maximum allowable
speed on the different terrains. Applying this controller to more sophisticated
robots that can operate at faster speeds is left for future work.

As mentioned previously, a decrease in the vehicle’s speed is related to a
decrease in the high-frequency vibration content. For this reason, it is most
intuitive to decrease the vehicle’s maximum permissible speed when the high-
frequency vibrations exceed the user-defined threshold, and increase the speed
if rk is too low. We define the high-frequency content ratio set point as r0 > 0.
In practice, r0 will have to be sufficiently large so as to overcome ambient noise
in the IMU. Moreover, a larger r0 allows the vehicle to traverse bumpier terrain
at faster velocities. This trade-off must be kept in mind while choosing this
constant. In the following, we refer to r as the value rk that corresponds to the
most recent sampling window.

We have elected to regulate r by means of an integral controller that acts on
the error e = r0 − r. This choice of controller design, over a proportional con-
troller, stems from a desire to prevent control-induced high-frequency vibrations.
In a proportional controller, instantaneous changes are immediately acted upon,
forcing jump changes in the maximum speed. In practice, this induces abrupt,
undesirable braking action and acceleration.

An integral controller also faces a number of challenges. When the vehicle
is stationary, the integral controller will continue accumulating as noise from
the IMU is integrated. This in turn leads to the issue of integral windup. We
overcome this issue by introducing an integral with projection. The accumulated
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integration from the current time step is given by Ii and the saturated value, Io,
is given as follows:

Io = proj[−V0,Vlim−V0](Ii +Kie∆twin). (6)

In (6), Ki > 0 scales the output error fed into the integration. A higher gain
implies a more aggressive response in the change of the maximum permissible
speed. Ki is to be limited in practice when rough terrain is expected during a
mission, since controller-induced vibrations are aggravated in such settings.

In (6) we also introduce a projection (or, in this case, ‘clamping’) operator.
The limits of the projection operator are [−V0, Vlim−V0], where Vlim is the user-
defined limiting speed of the vehicle, such that Vlim ≥ V0. The significance of
this result will become apparent below.

We obtain the maximum speed from this controller by taking Vmax = Io+V0

at each time step. We proceed by showing how this maximum speed is applied
to the control command given by the LQR controller of Sec. 3.2.

Vehicle speed regulation. Given a control command ~u, we can compute the
vehicle’s speed by means of (3). We define the commanded vehicle speed as

Vcmd =
√
ẋ2 + ẏ2. We identify two cases: the case where Vcmd ≤ Vmax, and the

case where Vcmd > Vmax.
In the former case (Vcmd ≤ Vmax), we apply ~u to the vehicle. This case will

most often arise when we are close to our waypoint ~xdes as the error in the
desired position fed into LQR controller will be much smaller. In the latter case
(Vcmd > Vmax), we have chosen to scale the velocity command as follows:

~ucmd =
Vmax

Vcmd
~u. (7)

It is obvious that this scaling results in a commanded velocity of magnitude
Vmax, as is desired.

This form of speed regulation raises the question of waypoint convergence, as
the vehicle’s velocity may converge to zero before it converges to the waypoint
since our error will be small close to the waypoint. In practice, given that r0
is taken to be greater than the value encountered at ambient noise, and given
a sufficiently large limit speed Vlim, as well as a sufficiently large gain Ki, the
vehicle will converge to the waypoint on all terrains encountered in practice.

The complete controller architecture is given in Fig 3. We will refer to this ar-
chitecture as an LQR-I controller, short for combined LQR and precompensated
integral controller.

Considerations in tuning. We now discuss a number of practical consider-
ations in tuning the proposed controller. The presented algorithm contains the
following tuning parameters:

– State and control penalty matrices Q,R;
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Discrete-time LQR
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Buffer

Discrete Fourier
Transform

Kinematic Model

Fig. 3. Block diagram of the combined LQR and precompensated integral controller.

– Nominal and limit velocity V0, Vlim;
– High-frequency content ratio setpoint r0, threshold frequency fth, and inte-

gral gain Ki;
– Sampling frequency fs and window duration ∆twin.

The state and control penalty matrices of the LQR controller can be designed
beforehand on nominal terrain types. The projection operator of (6) ensures that
the vehicle speed will not exceed Vlim. In this work, Vlim = 2 m/s. As mentioned
before, V0 can be assumed to be a mission defined parameter, loosely related
to the nominal mission speed, although it could be overruled in the case of
sufficiently harsh terrains.

The high-frequency content ratio setpoint r0 can be tuned heuristically by ac-
counting for ambient sensor noise. In the authors’ experience, the most straight-
forward way is to slightly vary it until the vehicle’s perceived motion is suf-
ficiently smooth. The same advice extends to the threshold frequency (fth),
although in our experience a value of 5 Hz worked for all trials. When taking
too high of a value, it is often the case that only sensor noise is accounted for.
This phenomenon may be aggravated by a poor choice of ∆twin, since a low
duration tends to lump most of the signal power in the lowest frequency buck-
ets. Conversely, too high of a window duration causes intolerable time delays in
registering the lag of the control signal, as mentioned previously.

The integral gain Ki, as mentioned previously, dictates how aggressively the
controller reacts to vibration changes. It is key to properly tune this value, since
controller-induced vibrations may quickly arise if this value is too high. In fact, a
sufficiently large value of Ki can cause repeated start/stop action at a frequency
of 1/(2∆twin).

Finally, fs should at least be twice the desired maximum frequency. This
could mean that frequencies as low as 20 Hz could potentially yield satisfactory
performance. Window duration ∆twin has been found to yield the best results
when taken to be 1 s.

MESAS2021, 023, v4 (major): ’High Frequency Vibration Reduction of Unmanned Ground . . . 11
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These parameters may require tuning as per user-defined goals and mission
objectives. It is important to note that although we developed a controller to
operate on the Jackal vehicle, the same control structure could be implemented
on other UGVs. Demonstration of this application is reserved for future work.

5 Experiments & Results

We implemented the novel controller on the Jackal UGV performing in various
terrains and collected the high-frequency noise and velocity content data. We
compared our controller to an open-loop test case to assess performance. We
compare high-frequency noise content and velocity command following for paved
concrete, grass, and mulch surfaces. Data is collected for transitions between
surfaces to illustrate the robustness of the implemented control algorithm and
show improved performance over all tested terrain.

For all trials, given the maximum speed of the Jackal is Vlim = 2 m/s; we
run the Jackal with a nominal speed V0 = 1 m/s. For the following experiments,
the vehicle is subjugated to identical terrain. The vehicle first moves through
with an open-loop controller with a fixed reference velocity without considera-
tion of the high-frequency content. Second, a closed-loop test is performed with
the proposed controller where the maximum permissible velocity is modified in
real time to mitigate vibrations impacts. The results form both test runs are
compared.

Obviously, performance is altered by the choice of integrator gain. A large
gain compensation results in faster changes to calculated Vmax, which results in
more oscillatory behavior. Through experimental trials, a good range of integra-
tor gains was found to be Ki ∈ [2, 4]. The gain parameters were tuned before the
experiments for optimal results, however, in practice this tuning is unnecessary
since the controller exhibits improved performance over all tested surfaces while
Ki ∈ [2, 4]. We set the high-frequency threshold for all experiments to be 5 Hz,
while the remaining parameters fs, ∆twin, Q, and R are equal to the values
defined in previous sections.

The controller was implemented onboard the vehicle in Python 2.7 on an
NVidia Jetson TX2 computer running Ubuntu 16.04 and ROS Kinetic. Low-level
controller commands were passed through the appropriate ROS topics provided
by Clearpath. The IMU used was a WaveShare 10 DOF IMU sensor board, which
was interfaced with the UGV through an Arduino Mega 2560. The controller
published input updates at 100 Hz, while IMU updates were read at 60 Hz.

5.1 Concrete Performance

Like many unmanned ground vehicles, the Jackal is designed with multipur-
pose maneuverable capabilities. One commonly encountered surface is concrete,
and thus to illustrate the capabilities of the LQR-I controller, we first analyze its
performance on a tiled concrete terrain. Figures 4 and 5 display the Jackal’s per-
formance autonomously navigating over concrete surfaces with open-loop control
(fixed movement speed of V0), and the closed-loop LQR-I controller, respectively.
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Fig. 4. Open-loop control with nominal velocity V0 = 1 meter per second.
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Fig. 5. Closed-loop LQR-I control with nominal velocity V0 = 1 compensating high-
frequency vibration content output such that rk tracks r0 = 0.1. Measured heading
speed ẋ is closely compared to the heading command ẋ and maximum velocity Vmax

set by the controller.

The open-loop manual control results in a steady velocity output that fol-
lows the nominal input speed command regardless of high-frequency noise. Given
the generally smooth surface of concrete, the high-frequency noise content stays
largely steady with the exception of some oscillations created by divots in the
path when transitioning from one concrete tile to another. Despite the smooth
surface and terrain, the high-frequency noise content ratio in Figure 4 is consis-
tently above the set threshold r0 = 0.1.

Figure 5 illustrates the enhanced performance of the Jackal as controlled by
the proposed LQR-I controller with a tuned integral gain Ki = 4. As the vehicle
begins moving, a large change in initial speed causes unwanted vibrations. Yet,
within approximately 5 seconds, the controller is able to compensate for the
unwanted initial high-frequency noise, decreasing the ratio to below the setpoint.
As explained in the previous section, as rk decreases below the set threshold,
the LQR controller increases control action with input ~u as Vcmd ≤ Vmax. This
causes the high-frequency ratio to increase until it exceeds its given threshold,
at which point the integrator compensates by decreasing the control action to
~ucmd as outlined in equation (7).
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Note that the controller exhibits both impressive velocity tracking and high-
frequency noise tracking. That is, not only is the high-frequency noise generally
kept at the desired threshold, the heading speed also closely follows the heading
command and maximum velocity set by the controller. This is largely due to
the robust properties of the LQR and integral controllers tasked with producing
optimal input commands, i.e., the LQR-I controller exhibits low peak sensitivities
at high frequencies [13, 16], and good low frequency command following with high
complementary sensitivities at low frequencies. With proper tuning, as the high-
frequency noise ratio increases, the integral controller attenuates high-frequency
noise with guaranteed convergence with added saturation limits, and as high-
frequency noise drops below the predefined threshold, LQR increases the velocity
to closely follow the nominal speed V0. To further test controller performance,
we implement the LQR-I controller on grass, where larger vibrations produce
more high-frequency noise content.

5.2 Grass Performance
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Fig. 6. Open-loop control with nominal velocity V0 = 1 meter per second.
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Fig. 7. Closed-loop LQR-I control with nominal velocity V0 = 1 compensating high-
frequency vibration content output such that rk tracks r0 = 0.1.6
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To further illustrate the performance and robustness of the proposed control
architecture, the Jackal travels on rougher terrains such as grass, where we ex-
pect to see significantly larger high-frequency noise [18]. By inspection, one can
easily note from Figure 6 that the open-loop control of the Jackal exhibits a sub-
stantially larger amplitude for the high-frequency noise ratio rk traversing grass
in comparison to maneuvering on concrete. Similar to the previous example, the
open-loop controller accurately follows the nominal speed of V0 = 1 meter per
second.

This example further highlights the controller performance and ability to
reduce unwanted high-frequency noise content while riding the boundary of the
maximum permissible vehicle speed. Consistent with previous results, the high-
frequency ratio has accurately been reduced to lightly oscillate about r = 0.1. At
the same time, the heading speed ẋ is nearly identical to the controller heading
command ẋcmd given by the LQR-I controller and the maximum velocity Vmax

determined by the speed regulator. The only substantial deviation happened
as the Jackal slowed to a stop while nearing its waypoint, causing the high-
frequency noise content to diminish to 0, which in turn set Vmax = 2 meters per
second.

Figures 5 and 7 display a vast improvement in Jackal’s performance when
compared to the open-loop controller in closely following a set high-frequency
noise content ratio while riding the boundary of the optimal permissible velocity.
Given the data shows the controller capabilities on smooth and difficult terrain,
we now aim to show improved controller performance when changing from one
environment to another.

5.3 Multi-terrain Performance

The final set of experiments contain data consisting of the speed and high-
frequency noise ratio as a function of time as the Jackal traverses concrete and
mulch over a distance of 15 meters. A vertical, red dotted line in Figures 8 and
9 denotes the distance at which the UGV transitions from concrete to mulch.
One can observe from Figure 8 that the amplitude of the high-frequency ratio
is significantly larger when maneuvering on mulch than concrete.

It is important to note that although the open-loop controller follows the
nominal velocity closely, there exists no point in time where the high-frequency
content is below the set threshold. Conversely, the closed-loop LQR-I controller
exhibits the ability to compensate performance to keep rk near the assigned
threshold regardless of changes in terrain while accurately tracking desired head-
ing and maximum velocity commands. Thus, Figure 9 empirically shows a promis-
ing example of the controller being capable of travelling multiple unknown sur-
faces without a priori knowledge regarding the environment.

In comparison to the previous two examples, the average speed in Figure 9
is slower, i.e., the controller produces an output velocity that is further from

6 Video of the controller applied to the Jackal UGV can be found at
https://uofi.box.com/s/9lvx16hrrw7kr4ew7og91w4uspid3n02.
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Fig. 8. Open-loop control with nominal velocity V0 = 1 meter per second.
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Fig. 9. Closed-loop LQR-I control with nominal velocity V0 = 1 compensating high-
frequency vibration content output such that rk tracks r0 = 0.1

the nominal value V0 = 1. This phenomenon is a result of the following factors:
(i) mulch being a particularly uneven surface that causes large high-frequency
amplitudes [18] and (ii) the integrator gain Ki = 2 being lower than its value in
the previous two examples, where Ki = 4, which encourages speed maintenance.
Since mulch is an unpredictable, uneven surface, the gain Ki is tuned lower
to help diminish controller-induced vibrations. In general, a lower Ki gain is
advisable when particularly unstructured terrain is expected, although as stated
previously, it is not necessary to tune the gain differently depending on the
terrain for improved performance.

These three examples illustrate that the proposed controller results in im-
proved UGV performance to mitigate undesirable high-frequency noise regard-
less of the terrain. Out of all tuning parameters, adopting a lower Ki value
appears to be key in handling unstructured terrain, whereas the LQR and fre-
quency threshold settings can remain fixed regardless of the specifics of the
current mission.
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6 Conclusion and Future Work

This paper presents a controller architecture to attenuate unwanted high-frequency
vibrations during transit of a ground vehicle, while preserving waypoint track-
ing capabilities at reasonable speeds. The control system provides a method of
maneuvering on unknown terrain while limiting damage to sensitive payloads
due to high-frequency vibrations. In a sense, this controller mimics a natural
human-like response while driving over various terrains - as the roughness of
the terrain changes humans adjust the speed of the vehicle to minimize sudden
impulses and prevent damage to the passengers and cargo inside. Furthermore,
this speed modulation can be achieved without the need of perception, terrain
identification, or extensive training.

Experiments indicate that regardless of noise introduced by unknown obsta-
cles over variable terrain, the proposed control architecture is capable following
a desired trajectory at the maximum velocity governed by the experienced vibra-
tions and high-frequency noise. We implemented the controller on a vehicle over
concrete, grass, and mulch. Regardless of the high-frequency vibration content,
the vehicle was able to perform its primary objective of moving to a desired
waypoint at the maximum permissible velocity while staying below the high-
frequency content ratio threshold.

In this work, the novel control system has been implemented on the Clearpath
Jackal UGV, a vehicle with a maximum speed of 2 m/s. This same control
structure can be scaled to larger systems with more capability without requiring
much retuning, eventually being implemented in scenarios for medical evacuation
and carrying various sensitive payloads. As the controller is implemented on more
complex systems, controller capabilities can consequently be enhanced. With a
higher maximum velocity, a proportional integral derivative controller can be
utilized for faster convergence to the desired waypoint, with added saturation or
a pre-filter to account for unwanted overshoot, and a low-pass filter to prevent
controller-induced vibrations.

Future work includes the use of a high-fidelity dynamic vehicle model to
loosen assumptions on non-slipping movement, which often does not hold on
highly unstructured terrain. This generalization would further be supported by
a transition to direct torque control, allowing for additional adaptive control ca-
pabilities. In addition, model-based filtering techniques may be used to filter out
low frequency components of the accelerations, thereby only considering terrain-
induced random noise. Finally, terrain classification may be possible using the
proposed high-frequency content ratio, as well as new measures based on other
sensors, such as piezo-electric haptic feedback and LIDAR sensing.
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