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Abstract: The first closed-loop control of electrosurgical power satisfying a specified tissue
damage bound along the desired tissue dissection path is presented. The damage is represented
by the 82 ◦C isotherm corresponding to the admissible tissue denaturation front position in
relation to that of the cutting probe tip. The front location is assessed in real time through the
infrared temperature readings of the 40 ◦C isotherm tightly related to the emerging denaturing
patch size around the moving probe tip. A control-oriented denaturing hypermodel and its
recasting into a form amenable for use in a moving-horizon locally linear model predictive
control law are presented. The optimal control action is determined by solving a compound
model predictive control problem that targets a number of active one-dimensional domains. This
model is obtained from an offline trained nonlinear autoregressive model with exogenous input.
To enforce the safety constraints, a supervisor system precedes the path planning control law.
This system prevents excessive denaturation by excluding certain system moves, and determines
system termination conditions. We experimentally demonstrate the system’s performance in two
different line-cutting tasks on ex vivo porcine tissue with a desired denaturation front.

Keywords: Medical robots and systems, autonomous robotic surgery, model-based planning.

1. INTRODUCTION

Over the past decades, the advantages of robot-assisted
surgery over conventional laparoscopy have become in-
creasingly apparent (Beasley, 2012). As the performance
demands on the robotic surgery tools grow, so does the
need for a deeper understanding of the physical phenom-
ena that govern both the tools and the tissue treated, as
well as the control laws for the precise attainment of the
surgical objectives.

Electrosurgery relies on the use of high power density radio
frequency currents to actively heat organic tissue, allowing
it to be denatured, coagulated, desiccated, fulgurated, or

⋆ Research reported in this publication was supported by the Na-
tional Institute of Biomedical Imaging and Bioengineering of the
National Institutes of Health under award number R01EB029766.
The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of
Health.

incised (Palanker et al., 2008). One of the key advantages
of electrosurgery is its simultaneous cutting and coagu-
lation capability, providing blood stoppage for complex
surgical tasks. Since this technique allows for precise ab-
lation of tissue with very little collateral damage (∼100–
400 µm), it is commonly used in practice, with over half
of the surgical procedures employing it (Palanker et al.,
2008). One of the key disadvantages of human-operated
electrosurgery is, however, the tendency to damage nearby
tissue due to an excessive influx of heat (Palanker et al.,
2008). The effects of this damage are not apparent to the
surgeon during operation, and appear only hours to days
after being inflicted. An illustration of the electrosurgical
process is shown in Fig. 1.

Here, we present a novel closed-loop-conditioned path
planning technique autonomously satisfying the specified
electrosurgical tissue denaturation bound, with built-in
measures to prevent tissue charring. Strict termination
conditions based on the spatial maximum temperature



Fig. 1. Exploded view of laparoscopic electrosurgical op-
eration, with the two semi-spheres designating the
tissue. Here, sdim denotes the phase-change interface
(PCI) location, with sdim, ss denoting its steady-state.

Fig. 2. Experimental setup illustrating the electrosurgical
tool, three-axis motion system, and IR thermographer
(left), and a closer view (right).

field are implemented to terminate the system before ex-
cessive damage is imparted onto the tissue. The explicit
objective is to attain full control of the tissue denaturation
front along the tissue dissection path. To the best of the au-
thors’ knowledge, the demonstrated path-planning/control
law is the first temperature-feedback and model-based au-
tonomous electrosurgical tool developed in the literature.

2. PRIOR WORK

The electrosurgical control problem can be posed as a
boundary control problem characterized by a controllable
heat flux, as dictated by the power setting, and cath-
ode position actuation. Describing the dynamics of heat
propagation in the tissue is a nontrivial problem; as the
first approximation, we consider a homogeneous substance
undergoing a moving phase change from virgin to dena-
tured tissue. This allows casting the denaturation control
problem as a Stefan problem (Cannon, 1984), in which the
control object is the moving phase-change interface (PCI),
and the manipulated variable (i.e., control input) is the
heat flux.

We have previously developed a novel pointwise non-
collocated feedback control law for the Stefan problem
in (El-Kebir and Bentsman, 2021) for a stationary heat
source. However, in electrosurgery the heat source is mov-
ing. Therefore, rather than controlling the PCI location
on a 1-D domain, the present work aims at addressing
the problem of path planning when operating on a 2-
D tissue surface. Saeidi et al. (2019) considered a fixed
power level and probe velocity in their path planning,
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Fig. 3. Control logic of the hypermodel-based electro-
surgery path planning method.

providing feedback only through trajectory deviation as
obtained from infrared and visible light cameras. Using
their approach, however, tissue damage is not factored
into feedback, resulting in an appreciable amount of tis-
sue charring. Opfermann et al. (2017) replaced the tissue
and probe dynamics by heuristic observations of tissue
charring, which allowed them to approximate the level
of charring for a number of tissue types. Their approach
relied on computer vision to account for path tracking
error, but functioned in an open loop fashion with regards
to the probe’s power level and duty cycle. This implies
that any spurious tissue reactions would not be accounted
for, and significant tissue damage could be imparted if the
system were to run fully autonomously.

In this work, we investigate the problem of path planning
in the context of electrosurgical control, with the explicit
goal of minimizing tissue damage. In particular, the main
objective is to induce a desired denaturation front by
simultaneously controlling both the position and the power
output of the electrosurgical probe. To this end, we present
a novel approach that leverages a spatial temperature field
and incorporates a hypermodel that maps the state of a
1-D temperature domain to a discrete-time model of the
phase-change interface dynamics subject to a boundary
heat flux input. These models are then used to solve a
moving-horizon model predictive control problem involv-
ing both the power input to the model from the probe
and the probe location, providing a feedback-based path
planning approach for controlling tissue denaturation. The
loop is closed by feedback from an infrared (IR) thermog-
rapher. Basic features of the experimental setup are shown
in Fig. 2.

The hypermodel considers step input responses of the
tissue PCI given a temperature field, using a wavelet-
based nonlinear system identification technique (Billings
and Wei, 2005). Given this hypermodel, a compound
model of several 1-D domains across the tissue can be
generated. For each of the models, a constrained moving
horizon model predictive control (MPC) problem is solved.
Since the compound model that is obtained is linear, it is
possible to regulate the phase-change interface tracking
errors, thereby tracking the desired denaturation front.
Based on the minimum cost attained the probe will either
remain stationary or move while applying the electrosur-
gical action. A flowchart detailing this process is given in
Fig. 3.



3. METHODS

We developed analytically and numerically, and imple-
mented in hardware, a control system based on an
electrosurgical power supply unit and a versatile, fully-
customizable 3-axis gantry system, which is used to per-
form a number of line cutting tasks on ex vivo porcine
tissue, while maintaining the desired denaturation front
to limit heat damage to the tissue. The system is capable
of running autonomously by virtue of local temperature
field feedback from a compact infrared thermographer,
an Optrix Xi 400 sensor with microscopic optics (Optris
GmbH). The system is shown in Fig. 2.

We first present the formulation of our control-oriented
one-dimensional tissue denaturation model, which will be
used to obtain a nonlinear discrete-time model of the
phase-change dynamics. The nonlinearity in the identified
model is represented through wavelet regressors. This non-
linear model, which we call the hypermodel, is dependent
on the current temperature field, allowing us to represent
the local linear phase-change interface dynamics for one-
dimensional slices in the problem domain. We present
a means of obtaining the local linear dynamics, as well
as a method of combining a number of one-dimensional
domains into a compound linear model based on a heat
flux distribution model.

Following this, we present the model predictive control
(MPC) architecture that we will leverage to obtain our
path. This architecture is comprised of a supervisor system
that provides a set of admissible movements as well as
system termination conditions, followed by a path planner,
which solves the MPC problem for three probe locations,
and executes the control policy that is optimal in a sense
that will be defined later.

3.1 Control-oriented Hypermodel

In El-Kebir and Bentsman (2021), we have argued that
the one-dimensional two-phase Stefan problem forms an
adequate control-oriented model for the stationary electro-
surgical impact. This model is based on a one-dimensional
domain, with Fourier heat transfer across two phases rep-
resenting, respectively, virgin and denatured tissue sep-
arated by a phase-change-interface (PCI), as shown in
Fig. 1. This one-dimensional model will be leveraged to
generate a hypermodel, as described in this section.

Two-phase One-dimensional Stefan Problem. We present
here a non-dimensional formulation of the two-phase Ste-
fan problem, based on an energy balance at the phase-

change interface (El-Kebir and Bentsman, 2021): ∂θ(ξ,τ)
∂τ
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where β :=
cp(Tmax−Tmin)

∆Hc

. Tmin and Tmax must be de-
fined such that the non-dimensional temperature remains
positive, with Tmax being sufficiently large. The non-
dimensional variables are then defined as: θ(ξ, τ) :=

T (z,t)−Tmin

Tmax−Tmin
, τ := αt

L2 , ξ := z
L
, s(τ) := sdim(t)

L
where L is

the domain length, α := k/ρcp is the molecular thermal
diffusivity, k is the thermal conductivity, ρ is the density,
and cp is the isochoric specific heat. Note that we assume
that α does not change. In the definition of β, which
closely parallels that of a Stefan number, ∆Hc is the
enthalpy of denaturation of the tissue. In the above, the
phase change (denaturation) occurs at non-dimensional
temperature θc. Finally, the controlled variable u(τ), i.e.,
the non-dimensional heat flux at the boundary, has the
following relation with its dimensional counterpart: u(τ) =

L
k(Tmax−Tmin)

q̇′′(t).

Following material characterization experiments using a
Q50 Thermogravimetric Analyzer and a Discovery 2500
Differential Scanning Calorimeter (TA Instruments, Inc.)
on porcine loin tissue, we measured the heat capacity in
the ambient regime cp = 4kJ/kg/K, latent heat of fusion
∆Hc = 250 kJ/kg, and the phase transition temperature
Tc ≈ 82 ◦C. In the following we shall use Tmax = 423.15
K, Tmin = 273.15 K, Tc = 355.15 K, ρ = 700 kg/m3, and
k = 0.5934 W/kg/K. These values were obtained from
Valvano et al. (1985), as well as our own experiments on
porcine loin tissue.

3.2 Hypermodel Construction

The above-mentioned highly nonlinear two-phase Stefan
problem serves as a fundamental basis for expressing
the system dynamics in the form amenable to model
predictive controller design. To retain the essential system
nonlinearities, an appropriate model structure was selected
and a dataset for training of the latter was generated.

The dataset was chosen to contain 2000 nondimensional
1-D two-phase Stefan problem solutions of 50 seconds
each, sampled with increments of 2.5 seconds. For each
sampling period, the PCI location and five temperatures
are sampled. The initial conditions are varied randomly,
while still maintaining a physically consistent temperature
field. The heat flux is constrained to be lower than that
generated by a 30 W power setting in direct contact with
the domain boundary, and is of bounded time variation
(less than one watt per sampling period), with a bias
towards maintaining constant power.

We have chosen to express the hypermodel as a discrete-
time nonlinear autoregressive system with exogenous in-
put, NLARX (Billings and Wei, 2005). NLARX models
can be constructed by training the system on an exten-
sive dataset, while the resulting system is still capable
of capturing the inherent nonlinearities in the dynamics
observed. We have trained the NLARX model and evalu-
ated it with validation data, with agreement between the
phase-change interface locations consistently being over
95% normalized root mean square error.

Heat Distribution Model. While our control input is the
electrosurgical probe power, it is necessary to obtain the
heat flux at the boundary of each active domain, since
this is the control input to the individual 1-D models.
To this end, a Gaussian heat input model is used (de
Freitas Teixeira et al., 2014; Das et al., 2003): q̇′′(r, P ) =
ηP
2πa exp

(

− 1
4a2 r

2
)

, where a is the heat dissipation distance



from the center of the probe (the greater this value, the
greater the heat input is spread), r is the distance to the
probe tip, P is the probe power, and η is the fraction
of the total energy that is conducted by the tissue. We
point, however, that an exponential-like decay may also
be appropriate depending on the medium features. Such
an inspection is outside of the scope of the current work.
Following results from de Freitas Teixeira et al. (2014), we
are taking a = 5 mm, η = 1. We point out that the results
should not be sensitive to variations in the factor a.

Compound Linear Model Construction. To enable the
hypermodel to be used in combination with a linear
model predictive controller, we must combine several one-
dimensional models and linearize the resulting dynamics.
For the purposes of generating a local linear model, we
consider radius r in the heat distribution model to be
equal to the average radius of all active domains, denoted
by ravg. By doing so, we effectively approximate the
distributed heat flux obtained by the Gaussian heat input
model by a single boundary heat flux point source. This is
justifiable by considering the sharp decrease in heat flux
observed in the heat input model, as well as the fact that
the tissue was found to only react to the heat flux in a
very small region (< 1 mm) during short periods of time
(in the order of 5 seconds).

Determination of the active domains is described in the
subsection on the supervisor system. We denote the dis-
tances to the probe for each of the N active domains by
ri.

Hypermodel linearization is done by considering an oper-
ating point that is equal to the current temperatures at the
sampling location, as well as the current PCI location on
that domain, as obtained from the maximum temperature
field. For domain i, this gives a nondimensional operating

point y
(i)
∗ ∈ [0, 1]6. This operating point is converted

to the internal linearized model state, which we denote
by x∗. Combining this with the present operating power
P∗, converted to the nondimensional heat flux u∗ at dis-
tance ravg from the probe, we then obtain a linearized

model x̄
(i)
k+1 = Ā(i)x̄

(i)
k + B̄(i)ūk, ȳ

(i)
k = C̄(i)x̄

(i)
k , where

the overbar denotes a deviation for the variables (i.e.,
·k = ·∗ + ·̄k). Combining the models for the active do-
mains, we can construct the compound linear model as
Ā = diag

([

Ā(1) · · · Ā(N)
])

, C̄ = diag
([

C̄(1) · · · C̄(N)
])

,

B̄ =
[

B̄(1)T · · · B̄(N)T
]T

q̇′′(ravg, 1)
L

k(Tmax−Tmin)
.

3.3 Model Predictive Control

In order to obtain our control strategy, it is necessary to
solve a model predictive control (MPC) problem that leads
to state tracking, while obeying the system’s constraints
on the minimum and maximum allowable power setting.
We use the MPC architecture presented by Diaz Dorado
(2018), which incorporates linear constraints.

In our implementation, the MPC solver operates on the
compound linear model described previously, with the
initial state x̄0 being obtained by considering the deviation
between the operating point and the desired operating
condition at the present time. The final control inputs are

obtained by considering uk = u∗+ūk, and converting back
to input power P .

Gain matrices. Given that MPC minimizes the cost
functional

∑T−1
k=0

(

ūT

kRūk + x̄T

kQx̄k

)

+x̄T

TPx̄T , we consider
the following structure for the penalty matrices:

Q = MQ×

diag[exp
(

(r2min − r21)/4a
2
)

I, . . . , exp
(

(r2min − r2N )/4a2
)

I],

P = (MP /MQ)Q, R = MR, where MQ,MP ,MR > 0, I
is an identity matrix of appropriate dimensions, and rmin

denotes the distance from the probe to the nearest active
heat influx boundary. With this gain structure, we place a
higher importance on closer domains.

3.4 Path Planning

Knowing the probe power at a given probe location for a
given desired PCI front, we can determine when and how
to move the probe along a predesigned path. To enable the
latter action, we have created a number of domains of fixed
lengths that face perpendicular to the cutting path. For
a given probe position, we allow either a step backward,
forward, or no movement, with a step size of 5 mm.

To decide the next command of the probe among these
three options, we consider both the error at the end of the
planning horizon and the initial error for a given probe
location. In particular, for each probe position we compute
the error: ǫ(pprobe) = x̄T

TPx̄T +
∑

i∈A(pprobe)
(si − sd)

−2,

where A(pprobe) is the set of admissible domains, defined
in the next subsection.

The first term considers the predicted deviation error
obtained after applying the MPC-derived control inputs
during the entire costing horizon, scaled according to the
distance of the probe with respect to the admissible do-
mains. This term incentivizes the system to move in direc-
tions where the most progress can be made in satisfying
the tracking requirements during the period of the costing
horizon, which endows the system with a form of foresight.

The second term serves to disincentivize the system from
moving in a direction in which the admissible domains are
close to having their tracking goals satisfied. This term
drives the system to move to locations where tracking is
lacking at the initial time.

Finally, during movement sequences the system maintains
the commanded cutting power, with one movement step
taking the same amount of time as a sampling period,
which is ∆t = 2.5 s. During movement, the system ceases
any temperature field updates, to prevent erroneous ones.
After a movement step, the local temperature field is
embedded into the global temperature field, with its origin
offset by the distance moved.

Supervisor system. The set of admissible domains is
computed for a given probe location pprobe, and depends
both on the vicinity to, as well as the PCI location of,
each domain. We require the following constraints to be
met for a domain i to be considered an admissible domain:
‖pprobe−pi‖ ≤ rc, |si−sd| ≤ ∆s, where pi denotes the heat
influx boundary of domain i, si denotes the PCI location
at domain i, sd is the desired PCI location, and rc is the



(a) Control command history of the power,
and the probe position; t = 0 denotes the
time of probe engagement.

(b) Final maximum temperature field
with domains (green dash-dotted), deci-
sion locations (green dots), denaturation
front (white solid), and decision temper-
ature front (white dotted).

(c) Photographs of the cut, normal (top),
and the same cut spread (bottom), to
show the containment of charring (from
left to right: trial 1, trial 2).

Fig. 4. Basic results of the two line-cutting trials.

cutoff radius. The cutoff radius is taken as 10 mm, since
it was observed that the heat input imparts no significant
temperature changes beyond this distance. The set of all
admissible domains given probe location pprobe is denoted
by A(pprobe).

At each probe location being considered, the supervisor
system instructs the path planning system to skip that
location if there are no admissible domains within the
cutoff radius. Otherwise, only the admissible domains are
considered in the compound model.

Termination of the system is governed by considering
maxi |si − sd| ≤ ∆s, maxi si − sd ≥ ∆sterm. If any of
these inequalities is satisfied, the system terminates. The
first inequality terminates the system based on sufficient
tracking of the PCI front, while the latter inequality is
based on a maximum allowable overshoot. We take ∆s =
0.25mm, and ∆sterm = 0.5mm, to limit the extent of
overshoot.

4. EXPERIMENTS & RESULTS

We performed two line cutting trials on sufficiently large
ex vivo porcine loin tissue of approximately flat surface,
obtained freshly from the University of Illinois Meat Sci-
ence Laboratory (Urbana, IL). In trial 1 the goal was to
perform a 5 mm deep 15 mm long cut, while limiting
the denaturation front to 2.5 mm away from the cutting
line. Trial 2 considered a 2.5 mm deep, 5 mm long cut,
with a denaturation front of 1 mm. Since errors in the
IR thermographer pointing accuracy become more crit-
ical as the desired denaturation front location becomes
smaller, instead of the location of the bespoke 82 ◦C de-
naturation temperature, the tightly related location of
the 40 ◦C isotherm was employed as the decision tem-
perature location, with the desired decision temperature
location being twice as far away, i.e., 5 mm, and 2 mm,
respectively. Consequently, for feedback, instead of the
computed PCI locations, we employ the computed decision

locations obtained by intersecting each domain with the
40 ◦C isotherm of the maximum temperature field using
piecewise linear interpolation. The latter temperature field
is the field of aggregated spatiotemporal temperature max-
ima over a particular trial.

The initial system power was set at 5W, with the system
immediately taking over control after the first solution is
obtained. The power was constrained to P ∈ [0, 15] W.
Four 40 mm long domains (Fig. 4b, top image) were con-
sidered in trial 1, whereas three domains (Fig. 4b, bottom
image) were considered in trial 2. The gain parameters
were taken as MP = MQ = 2 × 104 and MR = 0.5, and
were maintained constant to demonstrate transferability
of gains across different cutting tasks.

4.1 Control Command History Comparison

In the first trial, we see a relatively slow rise in power up to
around 7 W, after which the system ramps up power to the
maximum allowable level (15 W); see Fig. 4a. This is due
to an increase in the temperature field, but no significant
actuation of the decision temperature front, which causes
the MPC result to command a saturated control input.
In the second trial, a progressive rise pattern is observed,
due to the smaller decision front setpoint. Maximum power
is also maintained for half the amount of time compared
to the first trial. Both system runs terminate at around
the same time, after the supervisor system commands
termination due to violation of the maximum decision
front overshoot margin.

4.2 Maximum Temperature Field Comparison

Fig. 4b illustrates the final maximum temperature fields
for both trials. The decision front location is obtained from
these plots by considering the isotherm at the decision
temperature (white-dotted curve), and intersecting it with
the domains. The domains are shown as green dash-dotted
lines, with the computed decision location on each domain



denoted by a green dot. Note that the discrepancy between
the actual and the computed decision locations is due to
image calibration errors accumulated during the system
run, and possibly also due to local changes in the index of
refraction caused by the inclined view.

For both trials, the supervisor system terminated the
system run after one of the domains exceeds the allowable
overshoot margin. For trial 1, this was the third domain
from the left, whereas for trial 2, this was the first domain
from the left.

4.3 Final Cut Topography Comparison

The final cut topography for both trials is shown in
Fig. 4c. As expected, the resulting cut length matched the
commanded one. For trial 1, the off-white area surrounding
the cut has a front distance of approximately 2.5 mm, and
matches the denaturation temperature field footprint. This
holds less so at the two extremes, with some discrepancy
being observed at the leftmost boundary.

For the second trial, disregarding the high-temperature
streak on the left, the temperature-derived denaturation
front closely matches the off-white area surrounding the
cut. Once again, the cut has a denaturation area that
extends about 1 mm transversely from the cutting line.
Both results support approximation of the denaturation
front by a maximum (82 ◦C) temperature isotherm.

5. DISCUSSION

The probe movement during the cut gives rise to small un-
accounted for pointing errors, resulting in thermographer
misalignment and preventing the system from performing
longer and more complex cuts. Therefore, an improvement
in thermographer pointing precision is currently being
pursued through hardware refinement.

In the 82 ◦C isotherm marked on the maximum tempera-
ture field of trial 2 shown in Fig. 4b, a high-temperature
streak can be seen to extend due left. The latter depicts not
the surface temperature, but rather a high-temperature
particle stream that is traveling towards the suction sys-
tem. Redesigning the latter to minimize this streak will be
addressed in future work.

Saturation-like power level behavior towards the end of
a run represents a feedback-based satisfaction of the de-
natured boundary layer width constraint. A slow rise in
power allows slow PCI movement, permitting the system
to avoid denatured tissue width overshoot. However, the
desired denatured layer width limits the cutting depth in
the current control law. Minimizing tissue damage while
providing the desired cutting depth through feedback-
controlled power manipulation is the subject of future
work.

6. CONCLUSION

We described control-oriented process model development,
path planning, and tissue experimentation on an au-
tonomous electrosurgery platform. The system is the first
to place an explicit focus on performing cutting tasks
while controlling the denaturation front, relying solely on

temperature feedback. We showed a platform with col-
located sensing and actuation capabilities, and outlined
procedures for tuning the system parameters. The system
satisfactorily tracked a given desired denaturation front,
while accurately completing cutting tasks. The ability to
perform cutting tasks without imparting excessive heat
damage onto the surrounding tissue demonstrates the fea-
sibility of autonomous electrosurgical systems for regular
and infracentimetric cutting tasks.
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